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Abstract 
There are ongoing debates around the world regarding the effects of climate change on agriculture. All sectors 
are known to be affected by climate change, and the agricultural sector is no exception. The present study 
investigates the effects of climate change on agriculture in Turkey in the 1961-2018 period. In order to determine 
the link between the variables, an Autoregressive Distributed Lag (ARDL) bounds testing approach to co-
integration and Vector Autoregressive (VAR) analysis are applied. Results of the study show that CO2 emissions 
have a significant impact on agriculture. Thus, as Turkey’s population increases, food sufficiency and security will 
emerge as more important issues over the next decade, it is vital to take adaptive measures to cope with climate 
change and its impact on agriculture. 
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CO2 emisyonlarının tarım üzerindeki etkileri: Türkiye örneği 

 
Öz  
İklim değişikliğinin tarım üzerindeki etkileri konusunda dünya çapında devam eden tartışmalar bulunmaktadır. 
Tüm sektörlerin iklim değişikliğinden etkilendiği bilinmektedir ve tarım sektörü bu etkiden istisna değildir. Bu 
çalışma, iklim değişikliğinin Türkiye'de tarım üzerindeki etkilerini 1961-2018 dönemi için araştırmaktadır. 
Değişkenler arasındaki bağlantıyı belirlemek için, eş-bütünleşmeye bir gecikmesi dağıtılmış otoregresif (ARDL) 
sınır testi yaklaşımı ve vektör otoregresif (VAR) analiz uygulanmıştır. Çalışmanın sonuçları, CO2 emisyonlarının 
tarım üzerinde önemli bir etkiye sahip olduğunu göstermektedir. Dolayısıyla, Türkiye'nin nüfusu artışı ile beraber, 
gıda yeterliliği ve güvenliği önümüzdeki on yıl içinde daha önemli konular olarak ortaya çıkacak ve iklim 
değişikliğinin etkilerini göz önünde tutan önlemlerin alınması elzem olacaktır. 
 
Anahtar Kelimeler: Tarımsal üretim; CO2 emisyonları; İklim değişikliği; VAR analizi, ARDL 

 
1. Introduction 
 
Carbon dioxide (CO2) emissions affect all 
sectors around the world. For this reason, 
economic analyses have been made of its 
effect on many different sectors, such as 
agriculture, industrial production and services 
(Wang et al., 2018). Kyoto Protocol and 
European Union (EU) Decision 280/2004/EC 
report on greenhouse gas emissions. Under the 
Kyoto Protocol, new EU member states and 
candidate countries are given different targets 
for different base years. The available statistics 
relating to the environment include; water, 
wastewater, solid waste, air emission, air 
quality, biodiversity, environmental 
expenditures, environmental employment, 
climate statistics, soil pollution, sea pollution, 
noise pollution and sustainable development 
indicators (Sahinli, 2013).  

The effects of climate change on agriculture 
and natural ecosystems have been a subject of 
significant debate, and studies regarding the 
effects have been made using several statistical 
and econometric models. Studies in this field 
have investigated the rising temperature and its 
possible effect on agricultural products and 
production. Parry et al. (2004) analyses the 
global effects on production, crop yields and the 
risk of hunger relating to these socio-economic 
and climate scenarios. The DSSAT-Peanut 
model has been employed to examine the 
impact of climate change on peanut production 
and the oil sector. This model is calibrated 
primarily through the use of climate data from a 
31-year period (1981-2011) as well as soil and 
agronomy data. The calibrated model is 
subsequently applied to simulate future peanut 
yield on the basis of 20 climate scenarios 
extracted from the 5 Global Circulation Models 
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(GCMs) developed by the InterSectoral Impact 
Model Intercomparison Project (ISIMIP), 
accelerated by 4 Representative Concentration 
Pathways (RCPs) (Xuab et al., 2017).  
 
In a study by Cline (2008), it is asserted that 
developing countries are at greater risk than 
industrial countries as the impacts of global 
warming worsen. Using general circulation and 
agricultural impact models, Cline (2008) boldly 
examines the 2070–2099 period with a view to 
estimating the economic impact and effects of 
global warming. The results have shown that 
agricultural production in developing countries 
may fall by between 10 and 25 percent if global 
warming continues unabated (Cline, 2008). 
Farmers, as the primary agricultural 
stakeholders, face the greatest risk from climate 
vulnerability (Abid et al., 2015). Abid et al. 
(2015) analyze how farmers perceive climate 
change, and the manner of adapting their 
farming activities in response to the perceived 
changes in climate in areas of Punjab province 
of Pakistan. Their results reveal that awareness 
of climate change is widespread throughout the 
area, and that farming households are making 
the necessary adjustments to adapt their 
agricultural activities to respond to climatic 
change. In total, some 58 percent of farm 
households have adapted their farming 
activities to changes in climate (Abid et al., 
2015). The increase in population and the 
associated increase in consumption will affect 
global demand for food. In addition to the over-
exploitation of the fishing sector, countries are 
competing with each other for land, water and 
energy, and this situation will later be reflected 
on the food system and on the environment. 
The effects of climate change represent a 
particular global threat, and a global strategy is 
needed if sustainable and equitable food 
security is to be assured (Godfray et al., 2010).  
 
In another study, the Cobb-Douglas production 
function was employed in a quantitative 
examination of the impact of climate change on 
winter wheat yield in Northern China, with the 
impact of climatic factors on wheat production 
being assessed through a time-series analysis 
of agricultural production data and 
meteorological observations for the 1981-2016 
period (Zhang et al., 2006). Several studies 
have been conducted in agriculture modelling 
literature emphasizing the effects of CO2 
emissions on economic growth, output, 

productivity, agricultural crops, energy 
consumption and rural population (Abbas and 
Choudhury, 2013; Alam, 2013; Huang, 2014; 
Amponsah et al., 2015; Ali et al., 2017; Chandio 
et al., 2018; Dong et al., 2018; Chandio et al., 
2019). Li et al. (2011) claims that climate 
change will not have a universally negative 
effect on maize yield in the United States and 
China. The results of a climate change 
simulation on maize yields for the 2008-2030 
period indicated that a combination of changes 
in temperature and precipitation will have either 
positive or negative impacts on maize yield.  
 
The impacts of climate change on agriculture 
and human well-being include, but are not 
limited to, biological effects on crop yields, price 
fluctuations, reduced production potential and 
per capita calorie consumption, and child 
malnutrition. There are also a number of 
biophysical effects of climate change on 
agriculture, such as changes in production 
trends and prices, which directly affect the 
economic system, as farmers and other market 
players are compelled to make autonomous 
adjustments, leading to fluctuations in crop mix, 
input usage, production, food demand, food 
consumption and trade (Nelson et al., 2009).  
 
For the 1980-2003 period, Lobell et al. (2007) 
analyzed the relationship between crop yield 
and three important climatic variables, namely 
minimum temperature, maximum temperature 
and precipitation, for 12 important crops grown 
in California, namely wine grape, lettuce, 
almond, strawberry, table grape, hay, orange, 
cotton, tomato, walnut, avocado and pistachio. 
According to the results, recent climatic trends 
have had mixed effects on crop yields.  
 
Philips and Loretan (1991) proposed the 
Autoregressive Distributed Lag (ARDL) model 
to identify the co-integration relationship 
between related variables. In the assessment of 
the relationship between agricultural output, 
CO2 emissions, temperature, rainfall, area 
under cereal crop cultivation, fertilizer usage, 
energy consumption and rural population 
variables to establish evidence of long-run and 
short-run relationships, Chandio et al. (2020) 
utilized the ARDL bounds testing approach and 
the Johansen co-integration test. Bessler and 
Babula (1987) examined the impact of 
exchange rate shocks on individual commodity 
exports. Other empirical studies of the impacts 
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of the exchange rate using traditional 
econometric studies including Chambers and 
Just (1982), Batten and Belongia (1986) and 
Carter et al. (1990) revealed a significant direct 
impact of the exchange rate on agricultural 
prices and/or exports.  
 
In VAR models, first, the statistical model is 
described, after the structural model is 
determined (Spanos, 1990). Although both the 
VAR approach and traditional econometric 
approaches require identification restrictions, 
these restrictions are quite distinct in nature 
(Orden and Fackler, 1989). The present study, 
which makes use of a VAR analysis and ARDL 
approximations, may be the first to determine 
the effect of climate change on agriculture in 
the Turkish context. 
 
In this study, firstly, stationarity of CO2 
emissions and agricultural output are tested by 
using Augmented Dickey-Fuller (ADF) and 
Phillips-Perron (PP) unit root tests. 
Furthermore, Vector Autoregressive (VAR) and 
Autoregressive Distributed Lag Model (ARDL) 
bounds testing approximations are applied to 
identify any associations between the two 
variables, using data obtained from the World 
Development Indicators (WDI) database.  
 
 
2. Material and Method 
 
2.1. Data source 
 
The present study is based on a data set 
comprising 57 annual observations covering the 
1961-2018 period. The data can be viewed in 
two blocks: an environmental block (CO2 
emissions) and an agricultural block 
(agricultural value added). The data was 
obtained from the World Development 
Indicators (WDI) database (WDI, 2020), and the 
variables used were agriculture value added 
(AGR) (current US$), and total greenhouse gas 
emissions (CO2), (kt of CO2 equivalent). 

 
2.2. Package program 
 
The estimated model is created using EViews 
version 7.0 econometrics package software. 
The unit root test analysis is estimated through 
Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) tests. The VAR and ARDL 
coefficients are estimated from an OLS 

regression.  
 

2.3. Vector Autoregressive (VAR) 
 
The VAR model can be referred to as a system 
of dynamic simultaneous equations. By 
definition, the dependent variables are all 
endogenous in nature, while the independent 
variables are the set of lagged observations of 
all the variables in the system. Within the period 
in question, all of the observed variables in the 
system are found to affect one another. The 
VAR approach utilizes all endogenous variable 
lags in each behavioral equation in a reduced 
form. In placing identifying restrictions on the 
matrix of contemporaneous coefficients, the 
variance matrix of the residuals is used to 
identify the economic structure. For instance, a 
Cholesky decomposition of the covariance 
matrix results in orthogonal behavioral shocks 
and a contemporaneous coefficient structure 
that implies a recursive ordering between 
variables. 
 
Agriculture value added and CO2 emissions are 
important variables in the agriculture sector, 
with different techniques employed in the 
assessment of the relationships between them, 
alongside structural econometric models and 
time series approaches. One of the most 
important statistical methods used in this field of 
research is vector autoregressive (VAR) 
modelling. The VAR model is an alternative to 
the structural and conventional econometric 
approach, being a dynamic simultaneous 
equation model. To execute this model, it is 
necessary to review the simultaneous 
equations model (Sahinli, 2019). 
 
2.4. Auto Regressive Distributed Lag (ARDL) 
 
Philips and Loretan (1991) proposed the 
Autoregressive Distributed Lag Model (ARDL) 
as a co-integration relationship. The following 
equation can be followed to explain the ARDL 
model. 
 

                        (1) 
 
The number of lags to be added to the Equation 
1 is determined with the help of such criteria as 
AIC, SIC and LM, and especially the 
significance of the lags. A stable situation would 
be as follows in a long-term equilibrium 
relationship: 
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              (2) 
 
 
3. Results and Discussion 
 
3.1. VAR Results 
 
The first step in the process is to create a time 
series plot of the data displaying the annual 
AGR and CO2 for each year against within the 
years from 1961 to 2018. The original data is 

transformed by taking natural logarithm in order 
to reduce the effect of outliers. The annual time 
series are coded as LNAGR (Natural Logarithm 
of Agricultural Value Added) and LNCO2 
(Natural Logarithm of Total Greenhouse Gas 
Emissions) (Table 1).  
 
In the following Figures 1 and 2, the 
nonstationary shape of the time series is seen. 
These series randomly fluctuate, indicating the 
observation of a global trend or seasonal 
variations (Figure 1). 

 
Table 1. Descriptive statistics of the LNAGR and LNCO2 variables 
 LNAGR LNCO2 
Mean 23.720200 0.835690 
Median 23.741840 0.980851 
Maximum 24.967070 1.684547 
Minimum 22.142350 -0.483082 
Standard deviations 0.797636 0.550522 
Skewness -0.203769 -0.550899 
Kurtosis 2.051882 2.427776 
Jarque-Bera 2.573787 3.725043 
Probability 0.276127 0.155281 
Sum 1375.772 48.470 
Sum of squared deviations 36.26473 17.27522 
Observations 58 58 
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Figure 1. Time plots series of LNAGR (X: Year; Y: LNAGR: Natural logarithm of agricultural value added) 
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Figure 2. Time plots series of LNCO2 (X: Year; Y: LNCO2: Natural logarithm of total greenhouse gas emissions) 
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Table 2. Covariance analysis  
Correlation [t-statistic] (Probability) LNAGR LNCO2 
LNAGR 1.000000 
LNCO2 0.950888 1.000000 

(22.98871) 
(0.0000) 

 
Table 3. Unit root tests results 
Variables Deterministic component ADF PP 
LnAGR Intercept -1.750263 -1.746184 
LnCO2 Intercept -2.966119 -3.109835 
LnAGR Trend and intercept -2.414466 -2.741336 
LnCO2 Trend and intercept -3.798386 -3.850069 
ΔLnAGR Intercept -7.530148* -7.538009* 
ΔLnCO2 Intercept -7.859412* -7.851323* 
ΔLnAGR Trend and intercept -7.587972* -7.592725* 
ΔLnCO2 Trend and intercept -8.080570* -8.102711* 
ADF and PP represent the unit root tests, being the Augmented Dickey-Fuller and Phillips-Perron tests, respectively. 
(*) denote 1%, 5% and 10% levels of significance, respectively. 
 
Table 4. VAR lag order selection criteria 
Lag LogL LR FPE AIC SC HQ 
0 -44.3888 NA 0.017456 1.627679 1.699365 1.655538 
1 118.2484 308.1548* 6.68e-05* -3.93854* -3.72348* -3.85496* 
 
Table 2 shows the correlation between the 
variables. The correlation coefficient is 0.95, 
which implies a strong relationship. For the 
stationary test, an Augmented Dickey-Fuller 
(ADF) test, the most well-known test in 
literature, is applied. Test results are easy to 
interpret and quite efficient. This test is based 
on the following equation: 
 

      (3) 
Where, 

 = pure white noise error term 

 = difference of  
 

The Augmented Dickey Fuller (ADF) and the 
Phillips-Perron (PP) tests are used to determine 
the stationary of time series. In the present 
study, if there is a unit root, namely, if the null 
hypothesis is ρ=1, we can conclude from this 
result that the time series is nonstationary. The 
alternative hypothesis is |ρ|<1, indicating the 
time series is stationary. If ρ>1 then the original 
time series will be explosive.  
 
As (it) can be seen from Table 3, a test for unit 
root in level is carried out. Once again, there is 
a unit root, and LNAGR and LNCO2 are 
nonstationary. In the first difference model, the 
hypothesis, DLNAGR and DLNCO2 have no 
unit root is rejected, and the time series is thus 

stationary. The Phillips-Perron test yielded 
similar results. In the event of the LNAGR and 
LNCO2 series being stationary, a VAR analysis 
can be made, for which an appropriate lag 
length must first be determined. There are 
many criteria when determining lag length, 
being AIC, SIC, FPE and HQ, and the results 
related to these criteria are presented in 
Table 4. From the values given in Table 4, the 
proper lag length ρ=1 (Table 4) can be 
identified. All of the results for the estimated 
VAR (1) model are presented in Table 5. 
 
The results of all eigenvalues for the stability of 
the VAR (1) model are presented in Table 6. It 
is worthy of note that all of the roots are 
complex. Considering the absolute value, all of 
the calculated modules are smaller than the unit 
value (Figure 3). Furthermore, all of the 
characteristic roots fall within the unit circle, 
from which it can be concluded that the VAR (1) 
model is stable and fulfils the stationary 
conditions (Table 6). 
 
The impulse response functions are calculated 
and presented below. Until now, two variables 
are discussed: the LNAGR and the CO2 series. 
When a unit of random shock (both their own 
and the other variable's shocks) is applied to 
these variables, the responses of relevant 
variables can be shown for 10 periods in 
Figure 4. 
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Table 5. Results of vector autoregression estimates 

 
Table 6. Roots of characteristic polynomial 
Root Modulus 
0.797841-0.085370i 0.802395 
0.797841+0.085370i 0.802395 
 

Inverse roots of AR characteristics polynomial 
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Figure 3. Inverse roots of AR characteristic polynomial 
 
When the figure is examined (a), the panel 
shows the response of LNAGR to LNAGR, 
which means the reaction to itself. When a unit 
of random shock is given to the error term of 
LNAGR, this shock variable is shown to be 
affected by itself. Accordingly, when LNAGR is 
subjected to a shock, a random shock that will 
have a positive effect on LNAGR will occur. In 
other words, this shock is the effect of 
increasing LNAGR, and the effect increases 
over 10 years (Figure 4). When the figure is 
examined in the panel (b), LNAGR is presented 
as a reaction to LNLNCO2. Accordingly, when 
random shocks are applied to LNCO2 in the 
panel (b), the effect of the shock on LNAGR is 
considered. The results show that LNCO2 
shocks significantly affect LNAGR, that and 

LNAGR maintains a stationary condition. In 
other words, it can be said that a linear 
interaction exists between LNAGR and LNCO2. 
In this case, LNAGR increases LNCO2 for three 
periods, although the effect is slowly 
decreased. If the LNAGR increases (or 
decreases), so does the LNCO2 value, and vice 
versa. That is, the impulse response functions 
provide clues to causality, although 
interpretations must consider random shocks 
rather than being based on causality (Figure 4). 
Panel (c) of Figure 4 shows, the response of 
LNCO2 to LNAGR. There is an inverse 
relationship between LNCO2 and LNAGR. 
Accordingly, random shocks that occur in the 
LNAGR can decrease LNCO2 for five periods 
and the response is fading slowly (Figure 4). 

 LNAGR LNCO2 

LNAGR (-1) 
0.747349 -0.04701 

(-0.09519) (-0.02607) 
(-7.85114) (-1.80327) 

LNCO2 (-1) 
0.209266 0.848333 

(-0.19084) (0.05226) 
(-1.09655) (16.2316) 

C 
5.760539 1.100109 
(2.13863) (0.5857) 
(2.69356) (1.87829) 

@TREND 
0.00341 0.006097 

(0.00613) (0.00168) 
(0.55645) (3.63267) 

R-squared 0.957754 0.993107 
Adj. R-squared 0.955362 0.992717 
F-statistic 400.5147 2545.314 
Log likelihood 24.25292 98.07484 



Pakdemirli / Derim 37(1):33-43 
 

 
39 

Panel (d) presents the response to the LNCO2 
itself. In this regard, when a shock is applied to 
LNCO2, the random shock that will occur 
positive effect on itself. While this shock has a 
significant effect, it later reduces (Figure 4). 
 
The variance decomposition function for the 
VAR (1) model is valid. Variance decomposition 
analyses explore the source of variations in the 
variance of a variable, revealing the 
endogenous states of the variables. The 
following table shows the variance 
decomposition results of the Cholesky 
decomposition, based on the LNAGR and 
LNCO2 ranking (Table 7). In Table 7, firstly 
LNAGR variance decomposition results are 
provided. In the first period, change in standard 
deviations of LNAGR, 100% depends on itself. 
In the second period, around 99.81% of the 
total change comes from itself, and 0.19% is 
derived from LNCO2. After ten periods, 96.71% 
is derived from itself, and 3.29% from LNCO2.  
 
Table 7 also presents the results of the 
variance decomposition of LNCO2. In the first 
period, 92.06% of the change in the standard 

deviations of LNCO2 come from itself, while 
7.94% is stemmed from LNAGR. However, 
after 10 periods, 88.05% of the change in the 
standard deviations of LNCO2 is derived from 
itself, and 11.95% is derived from LNAGR. 
 
In Table 8, the results of the variance 
decomposition are presented by Cholesky 
decomposition based on LNCO2 and LNAGR 
ordering (Table 8). Table 8 shows firstly the 
LNAGR variance decomposition results. In the 
first period, 92.06% of the change in the 
standard deviations of LNAGR came from itself, 
and 7.94% from LNCO2. In the second period, 
90.46% of the change in standard deviations of 
LNAGR came from itself, and 9.54% from 
LNCO2. After 10 periods, 84.07% of the change 
in standard deviations of LNAGR came from 
itself, and 15.93% from LNCO2. Table 8 
provides also the LNCO2 variance 
decomposition results. In the first period, 100% 
of the change in standard deviations of LNCO2 
derive from itself. However, ten periods later, 
79.01% of the change in the standard 
deviations of LNCO2 came from itself, and 
20.99% from LNAGR.  
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Figure 4. Response to Cholesky One S.D. (d.f. adjusted) Innovations ±2 S.E. Panels: a, b, c, d left to right, 
respectively 
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Table 7. Variance decomposition of LNAGR and LNCO2 
Variance decomposition of LNAGR 
Period S.E. LNAGR LNCO2 
1 0.163974 100.0000 0.000000 
2 0.206500 99.80935 0.190646 
3 0.227426 99.44262 0.557381 
4 0.238486 98.97583 1.024167 
5 0.244462 98.47663 1.523316 
6 0.247717 97.99727 2.002734 
7 0.249504 97.57118 2.428821 
8 0.250500 97.21479 2.785209 
9 0.251072 96.93113 3.068871 
10 0.251416 96.71459 3.285411 
Variance decomposition of LNCO2 
Period S.E. LNAGR LNCO2 
1 0.044907 7.944435 92.05556 
2 0.057981 5.038544 94.96146 
3 0.065636 4.186893 95.81311 
4 0.070704 4.656992 95.34301 
5 0.074252 5.831832 94.16817 
6 0.076799 7.274136 92.72586 
7 0.078641 8.713322 91.28668 
8 0.079970 10.004690 89.99531 
9 0.080921 11.087590 88.91241 
10 0.081593 11.952250 88.04775 
Cholesky Ordering: LNAGR LNCO2 
 
Table 8. Variance decomposition of LNCO2 and LNAGR 
Variance Decomposition of LNAGR 
Period S.E. LNAGR LNCO2 
1 0.16397 92.05556 7.94444 
2 0.20650 90.46347 9.53653 
3 0.22743 88.98917 11.01083 
4 0.23849 87.69491 12.30509 
5 0.24446 86.61522 13.38478 
6 0.24772 85.75690 14.24310 
7 0.24950 85.10470 14.89530 
8 0.25050 84.62955 15.37045 
9 0.25107 84.29680 15.70320 
10 0.25142 84.07238 15.92762 
Variance decomposition of LNCO2 
Period S.E. LNAGR LNCO2 
1 0.044907 0.000000 100.00000 
2 0.057981 1.627061 98.37294 
3 0.065636 4.502425 95.49757 
4 0.070704 7.839884 92.16012 
5 0.074252 11.109520 88.89048 
6 0.076799 14.019250 85.98075 
7 0.078641 16.449470 83.55053 
8 0.079970 18.387400 81.61260 
9 0.080921 19.877340 80.12266 
10 0.081593 20.988200 79.01180 
Cholesky Ordering: LNCO2 LNAGR 
 
3.2. ARDL results 
 
The logarithms of both the CO2 emission and 
agriculture value added series are taken, and 
the time path graphs of both series are 
presented in Figures 1 and 2. It can be stated 

that both series (LNCO2 and LNAGR) are 
integrated from the first order, i.e. I (1) (Table 
3). Since both series (LNCO2 and LNAGR) are 
integrated in the first order, that is, I (1), an 
ARDL matching analysis is initiated. The 
number of lags included in the estimated model 
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during the implementation of the ADF unit root 
test and Phillips-Perron (PP) test are 
determined based on the Akaike Information 
Criteria (AIC). The relevant values are 
presented in Table 3. According to these 
values, when both evaluation criteria are 
considered, it can be seen that no serial 
correlation exists in the residuals if the model is 
lagged by 1 (one) (Table 3). The ARDL model 
estimate results are presented in Table 9. 
 
The calculation of long-term parameters using 
the results of the ARDL model estimation is 
given below. 
 

 

 

In this case, the co-integration model showing 
the long-term relationship can be defined as: 
 

 
 
The deviation can be calculated from the 
equilibrium: 
 

 
 
A stationary test for deviations from the 
equilibrium is carried out: 
 

 

t-stats  (respectively); (-3.212), (2.014), (2.013),  
 

(0.908), (-0.115), (2.214). 
 
The calculated value of -3.212 is less than the 
critical values at the three significance levels, 
and the basic hypothesis is thus rejected. This 
means that both variables are counteracted. 
Later, based on these results, an Error 
Correction Model can be estimated (Table 10). 
The main conclusion from this study is that the 
impact of CO2 emissions on agricultural value 
added are valid and relatively large. 
 
 
4. Conclusion  
 
The main aim of this empirical study is to 
assess the impact of climate change on 
agricultural output in Turkey within the 1961–
2018 period. The study employed unit root 
tests, such as ADF and PP, to check the 
stationarity of variables. The ARDL approach is 
used to check the causality between these 
variables through long- and short-run analysis. 
Unit root test estimations confirm that the 
variables are stationary at the I (1). Moreover, 
the results of the ARDL approach indicate a 
long-run association between LNAGR and 
LNCO2 emissions at 1%, 5% and 10% 
significance levels. Autoregressive Distributed 
Lag and Vector Autoregressive models are 
used to determine the relationship between 
them, and the numerical results indicate a 
robust relationship between the variables. The 
indicators of the variables are consistent with 
the expectations.  
 
The findings of the study reveal that CO2 
emissions and agriculture value added are co-
integrated in the long-run. In the ARDL model, it  

Table 9. ARDL model estimation results 
Variable Coefficient Std. Error t-Statistic Prob. 
C 4.987641 1.955752 2.550242 0.0137 
LNCO2 0.935522 0.431370 2.168724 0.0346 
LNCO2 (-1) -0.636049 0.443656 -1.433654 0.1575 
LNAGR (-1) 0.779500 0.086566 9.004681 0.0000 
R-squared 0.960970 
Adj. R-squared 0.958761 
F-statistic 434.9808 
 
Table 10. Unit root tests for residuals 
 t-statistic Prob. 
Augmented Dickey-Fuller test statistic -3.212054 0.0018 

Test critical values: 1% level -2.610192 
5% level -1.947248 

10% level -1.612797 
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is seen that the obtained -3.212 value is less 
than the critical values at 1%, 5% and 10% 
significance levels, and so the null hypothesis is 
rejected. This means that variables are 
counteracted. Impulse response functions 
provide clues to causality, although 
interpretations must be made considering 
random shocks, not on the basis of causality. 
Thus, as Turkey’s population increases, food 
sufficiency and security will emerge as more 
important issues over the next decade, it is vital 
to take adaptive measures to cope with climate 
change and its impact on agriculture. There is, 
however, a need for further studies of CO2 
emissions and agriculture value added at 
provincial levels in Turkey. In future studies, the 
link between CO2 emissions and the yields of 
any crops could be analysed using other 
econometrics models for the sake of precision. 
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